9183 measured reflections 3256 independent reflections

 $R_{\rm int} = 0.023$

2870 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-Dimethylamino-2-phenyl-1,2,4triazolo[1,5-a][1,3,5]triazin-5-amine methanol solvate¹

Anton V. Dolzhenko,^a* Geok Kheng Tan,^b Lip Lin Koh,^b Su Fen Woo^b and Wai Keung Chui^a

^aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and ^bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

Correspondence e-mail: phada@nus.edu.sg

Received 7 August 2008; accepted 22 September 2008

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.139; data-to-parameter ratio = 15.9.

7-Dimethylamino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine crystallized with one molecule of methanol to give the title compound, C₁₂H₁₃N₇·CH₃OH. The triazolo[1,5-a]-[1,3,5]triazine heterocyclic core is essentially planar as are both amino groups that are involved in π -electron delocalization with the triazolo[1,5-a][1,3,5]triazine nucleus. The methyl groups of the dimethylamino fragment are involved in the formation of weak intramolecular C-H···N hydrogen bonds with the N atoms of the heterocyclic system. The crystal packing is stabilized by intermolecular N-H···N hydrogen bonds between the triazolo[1,5-a][1,3,5]triazine molecules. The methanol solvent molecule also participates in the formation of the crystal structure via intermolecular O- $H \cdots N$, $N - H \cdots O$ and weak $C - H \cdots O$ hydrogen bonds, linking the layers of triazolo[1,5-a][1,3,5]triazine molecules.

Related literature

The 1,2,4-triazolo[1,5-a][1,3,5]triazine (5-azapurine) heterocyclic system has been reviewed by Dolzhenko et al. (2006). For investigations on 5,7-diamino-1,2,4-triazolo[1,5-a][1,3,5]triazines, see Dolzhenko et al. (2007). For a similar structure, see: Gilardi (1973). For related literature, see: Dolzhenko et al. (2008)

¹ Part 11 in the series 'Fused heterocyclic systems with an s-triazine ring'. For Part 10, see Dolzhenko et al. (2008).

Experimental

Crystal data

C ₁₂ H ₁₃ N ₇ ·CH ₄ O	$\gamma = 102.883 (1)^{\circ}$
$M_r = 287.34$	V = 714.39 (8) Å ³
Triclinic, P1	Z = 2
a = 6.9963 (5) Å	Mo $K\alpha$ radiation
b = 8.0435 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 13.0942 (9) Å	T = 223 (2) K
$\alpha = 93.493 \ (1)^{\circ}$	$0.74 \times 0.68 \times 0.40 \text{ mm}$
$\beta = 93.972 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\rm min} = 0.935, T_{\rm max} = 0.964$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.139$	independent and constrained
S = 1.07	refinement
3256 reflections	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots$ $O1S-H1S\cdots N1$ 0.92 (2) 1.97 (2) 2.8861 (16) 172.8 (18) $N6-H6NB\cdots N4^i$ 0.86 (2) 2.11 (2) 2.9679 (17) 178.8 (18) $N6-H6NA\cdots O1S^i$ 0.89 (2) 2.398 (19) 3.0280 (18) 128.3 (16) $C6-H6C\cdots N2$ 0.97 2.08 2.8753 (18) 138 $C6-H6C\cdots N2$ 0.97 2.54 2.0484 (17) 105					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 01S - H1S \cdots N1 \\ N6 - H6NB \cdots N4^{i} \\ N6 - H6NA \cdots 01S^{i} \\ C6 - H6C \cdots N2 \\ C6 - H6C \cdots N3 \\ C7 - H7A \cdots N5 \\ C7 - H7A \cdots 01S^{i} \\ C7 - H7A \cdots 01S^{i} \end{array}$	0.92 (2) 0.86 (2) 0.89 (2) 0.97 0.97 0.97	1.97 (2) 2.11 (2) 2.398 (19) 2.08 2.54 2.22 2.48	2.8861 (16) 2.9679 (17) 3.0280 (18) 2.8753 (18) 2.9484 (17) 2.6788 (18) 2.4428 (10)	172.8 (18) 178.8 (18) 128.3 (16) 138 105 108

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Academic Research Fund of the National University of Singapore (WBS R-148-000-069-112) and the National Medical Research Council, Singapore (NMRC/NIG/0019/2008 and NMRC/NIG/0020/2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2109).

References

Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany

- Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723-1759.
- Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007). Heterocycles, 71, 429-436.
- Dolzhenko, A. V., Tan, B. J., Dolzhenko, A. V., Chiu, G. N. C. & Chui, W. K. (2008). J. Fluorine Chem. 129, 429-434.
- Gilardi, R. D. (1973). Acta Cryst. B29, 2089-2095.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o2021 [doi:10.1107/S1600536808030481]

7-Dimethylamino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine methanol solvate

A. V. Dolzhenko, G. K. Tan, L. L. Koh, S. F. Woo and W. K. Chui

Comment

1,2,4-Triazolo[1,5-*a*][1,3,5]triazine system is known as 5-aza-isostere of the purine core. Compounds based on this skeleton have been shown to possess a wide range of biological activities (Dolzhenko *et al.*, 2006). In continuation of our investigations on 5,7-diamino-1,2,4-triazolo[1,5-*a*][1,3,5]triazines (Dolzhenko *et al.*, 2007), we report herein the structural study of 7-dimethylamino-2-phenyl-1,2,4-triazolo[1,5-*a*][1,3,5]triazine5-amine (Fig. 1).

The fused triazine and triazole rings are located practically in the same plane (the angle between the mean planes of these rings makes 1.66 (4)°). The phenyl ring makes a dihedral angle of 22.70 (5)° with the mean plane of the 1,2,4-triazolo[1,5-a][1,3,5]triazine core. Similarity of the lengths of C3—N4, C3—N5, C3—N6, C4—N3, C4—N5 and C4—N7 makes evidence for π -electron delocalization of the amino groups with the 1,2,4-triazolo[1,5-a][1,3,5]triazine core.

The dimethylamino group (C6—N7—C7) has an out-of-plane twist (4.3 (8)°). The nitrogen atom of dimethylamino group (N7) has a slightly pyramidal stereochemistry [C6-N7-C7 = 115.0 (1)°] and it is located 0.039 (1) Å above the C4/C6/C7 plane. These data are in good agreement with previously reported results on the similar structure of 5,7-bis(dimethylamino)-2-methylthio-1,2,4-triazolo[1,5-*a*][1,3,5]triazine (Gilardi, 1973).

The methyl groups of dimethylamino fragment are involved in the formation of weak C-H···N intramolecular hydrogenbonds with the nitrogen atoms of the heterocyclic system (Tab. 1).

7-Dimethylamino-2-phenyl-1,2,4-triazolo[1,5-*a*][1,3,5]triazin-5-amine crystallizes together with one molecule of methanol (Fig. 1). The methanol molecule participates in the formation of the crystalline structure *via* intermolecular O-H…N, N-H…O and weak C-H…O hydrogen-bonds linking the layers of the molecules of 7-dimethylamino-2-phenyl-1,2,4triazolo[1,5-*a*][1,3,5]triazin-5-amine (Tab. 1, Fig. 2).

Experimental

2-Phenyl-7-trichloromethyl-1,2,4-triazolo[1,5-*a*][1,3,5]triazin-5-amine (0.66 g, 2.0 mmol) was added to cold (0-5 °C) dimethylamine (5 ml). The mixture was stirred first in ice-bath for 20 min and then for another 60 min at room temperature. Cold water (20 ml) was added and the product was filtered and recrystallized from methanol (m.p. 521 K).

Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.94 Å for C_{aryl} -H and 0.97 Å for methyl groups; $U_{iso}(H) = 1.2U_{eq}(C_{aryl})$ and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$] while the hydroxyl and the amino H atoms were refined freely.

Figures

Fig. 1. The molecular structure of the title molecules with the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Molecular packing viewed along the axis *c*.

7-Dimethylamino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine methanol solvate

Crystal data	
$C_{12}H_{13}N_7 \cdot CH_4O$	Z = 2
$M_r = 287.34$	$F_{000} = 304$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.336 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 521 K
<i>a</i> = 6.9963 (5) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>b</i> = 8.0435 (5) Å	Cell parameters from 5236 reflections
c = 13.0942 (9) Å	$\theta = 2.6 - 27.5^{\circ}$
$\alpha = 93.493 (1)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 93.972 \ (1)^{\circ}$	T = 223 (2) K
$\gamma = 102.883 \ (1)^{\circ}$	Block, colourless
V = 714.39 (8) Å ³	$0.74 \times 0.68 \times 0.40 \text{ mm}$

Data collection

Bruker SMART APEX CCD diffractometer	3256 independent reflections
Radiation source: fine-focus sealed tube	2870 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 223(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -9 \rightarrow 9$
$T_{\min} = 0.935, T_{\max} = 0.964$	$k = -10 \rightarrow 10$
9183 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2

 $wR(F^2) = 0.139$

3256 reflections

205 parameters 53 constraints

S = 1.07

methods

Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: difference Fourier map H atoms treated by a mixture of $R[F^2 > 2\sigma(F^2)] = 0.047$ independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0789P)^2 + 0.1582P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.26 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \ e \ {\rm \AA}^{-3}$ Extinction correction: none Primary atom site location: structure-invariant direct

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.81509 (16)	0.63570 (13)	0.67882 (8)	0.0325 (3)
N2	0.66405 (16)	0.37327 (13)	0.60113 (8)	0.0322 (3)
N3	0.73812 (15)	0.48432 (13)	0.52921 (8)	0.0296 (2)
N4	0.90611 (16)	0.77645 (13)	0.52784 (9)	0.0343 (3)
N5	0.81734 (16)	0.59004 (13)	0.37296 (8)	0.0327 (3)
N6	0.9623 (2)	0.87296 (16)	0.36975 (11)	0.0432 (3)
H6NA	0.954 (3)	0.859 (2)	0.3018 (16)	0.053 (5)*
H6NB	1.001 (3)	0.975 (3)	0.3987 (15)	0.055 (5)*
N7	0.65525 (16)	0.30863 (13)	0.37239 (8)	0.0343 (3)
C1	0.71566 (17)	0.47092 (16)	0.68750 (10)	0.0309 (3)
C2	0.82710 (17)	0.64251 (15)	0.57841 (10)	0.0304 (3)
C3	0.89340 (18)	0.74312 (16)	0.42567 (10)	0.0330 (3)
C4	0.73645 (17)	0.45873 (15)	0.42375 (10)	0.0291 (3)
C6	0.5786 (2)	0.14747 (17)	0.41673 (12)	0.0439 (3)
H6A	0.6609	0.0681	0.4018	0.066*
H6B	0.4452	0.0991	0.3874	0.066*
H6C	0.5789	0.1681	0.4905	0.066*

supplementary materials

C7	0.6562 (2)	0.29631 (19)	0.26060 (11)	0.0428 (3)
H7A	0.6950	0.4101	0.2371	0.064*
H7B	0.5255	0.2413	0.2299	0.064*
H7C	0.7489	0.2293	0.2406	0.064*
C8	0.66609 (18)	0.40434 (16)	0.78684 (10)	0.0333 (3)
C9	0.7706 (2)	0.4838 (2)	0.87779 (11)	0.0431 (3)
H9	0.8728	0.5815	0.8760	0.052*
C10	0.7244 (3)	0.4193 (2)	0.97062 (12)	0.0517 (4)
H10	0.7960	0.4728	1.0318	0.062*
C11	0.5733 (3)	0.2762 (2)	0.97403 (12)	0.0512 (4)
H11	0.5433	0.2323	1.0374	0.061*
C12	0.4663 (2)	0.1978 (2)	0.88451 (12)	0.0456 (4)
H12	0.3624	0.1016	0.8870	0.055*
C13	0.5127 (2)	0.26140 (17)	0.79114 (11)	0.0386 (3)
H13	0.4402	0.2078	0.7302	0.046*
O1S	1.00567 (17)	0.92566 (15)	0.81876 (10)	0.0530 (3)
H1S	0.936 (3)	0.838 (3)	0.7737 (16)	0.061 (6)*
C1S	0.8695 (3)	0.9935 (3)	0.86937 (19)	0.0739 (6)
H1S1	0.8051	0.9119	0.9148	0.111*
H1S2	0.7720	1.0174	0.8195	0.111*
H1S3	0.9360	1.0986	0.9092	0.111*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0333 (5)	0.0275 (5)	0.0349 (6)	0.0040 (4)	0.0007 (4)	0.0013 (4)
N2	0.0341 (5)	0.0271 (5)	0.0341 (5)	0.0038 (4)	0.0024 (4)	0.0047 (4)
N3	0.0296 (5)	0.0238 (5)	0.0336 (5)	0.0028 (4)	0.0011 (4)	0.0019 (4)
N4	0.0364 (6)	0.0256 (5)	0.0383 (6)	0.0017 (4)	0.0027 (4)	0.0021 (4)
N5	0.0333 (5)	0.0287 (5)	0.0353 (6)	0.0054 (4)	0.0039 (4)	0.0019 (4)
N6	0.0550 (8)	0.0304 (6)	0.0409 (7)	0.0007 (5)	0.0081 (5)	0.0054 (5)
N7	0.0370 (6)	0.0277 (5)	0.0355 (6)	0.0036 (4)	0.0005 (4)	-0.0014 (4)
C1	0.0279 (6)	0.0288 (6)	0.0356 (6)	0.0056 (4)	0.0009 (5)	0.0032 (5)
C2	0.0279 (6)	0.0249 (6)	0.0370 (6)	0.0048 (4)	-0.0005 (5)	-0.0006 (5)
C3	0.0302 (6)	0.0286 (6)	0.0402 (7)	0.0059 (5)	0.0042 (5)	0.0041 (5)
C4	0.0253 (5)	0.0280 (6)	0.0339 (6)	0.0068 (4)	0.0009 (4)	0.0008 (5)
C6	0.0527 (8)	0.0260 (6)	0.0473 (8)	-0.0013 (6)	0.0026 (6)	-0.0023 (5)
C7	0.0503 (8)	0.0391 (7)	0.0357 (7)	0.0062 (6)	0.0021 (6)	-0.0066 (5)
C8	0.0330 (6)	0.0326 (6)	0.0348 (7)	0.0081 (5)	0.0020 (5)	0.0042 (5)
C9	0.0414 (7)	0.0436 (7)	0.0394 (7)	0.0010 (6)	-0.0008 (6)	0.0031 (6)
C10	0.0558 (9)	0.0599 (10)	0.0340 (7)	0.0036 (7)	-0.0015 (6)	0.0021 (6)
C11	0.0560 (9)	0.0599 (10)	0.0368 (7)	0.0074 (7)	0.0106 (6)	0.0109 (7)
C12	0.0446 (8)	0.0442 (8)	0.0462 (8)	0.0029 (6)	0.0098 (6)	0.0095 (6)
C13	0.0394 (7)	0.0355 (7)	0.0388 (7)	0.0046 (5)	0.0017 (5)	0.0034 (5)
018	0.0485 (6)	0.0470 (6)	0.0569 (7)	-0.0004 (5)	0.0067 (5)	-0.0090 (5)
C1S	0.0679 (12)	0.0663 (12)	0.0864 (14)	0.0126 (10)	0.0233 (11)	-0.0111 (11)

Geometric parameters (Å, °)

N1C11.3681 (16)C7H7B0.9700N2C11.3172 (17)C7H7C0.9700N2N31.3846 (14)C8C91.393 (2)N3C41.3826 (16)C8C131.3939 (19)N3C21.3830 (15)C9C101.381 (2)N4C21.3330 (16)C9H90.9400N4C31.3412 (18)C10C111.384 (2)N5C41.3226 (16)C10H100.9400N5C31.3524 (16)C11C121.382 (2)N6C31.3330 (17)C11H110.9400N6H6NA0.89 (2)C12C131.385 (2)N6H6NB0.86 (2)C12H120.9400N7C41.3323 (16)C13H130.9400N7C61.4594 (17)OISC1S1.386 (2)N7C71.4617 (18)OISH1S10.9700C6H6A0.9700C1SH1S10.9700C6H6A0.9700C1SH1S30.9700C6H6A0.9700C1SH1S30.9700C4N3C2119.85 (11)H7AC7H7B109.5C4N3-N2130.72 (10)N7C7H7C109.5C4N3-N2130.72 (10)N7C7H7C109.5C4N3-N2130.98 (11)H7A-C7H7C109.5C4N3-N2130.98 (11)H7A-C7H7C109.5C4N3-N2130.98 (11)H7B-C7H7C109.5C3N6-H6NA119.013)C9C8C1120.54 (12)C3N6-H6NB120.1 (13)C13C8C1120.54 (12)
N2C1 $1.3172 (17)$ C7H7C 0.9700 N2N3 $1.3846 (14)$ C8C9 $1.393 (2)$ N3C4 $1.3826 (16)$ C8C13 $1.3939 (19)$ N3C2 $1.3830 (15)$ C9C10 $1.381 (2)$ N4C2 $1.3330 (16)$ C9H9 0.9400 N4C3 $1.3412 (18)$ C10C11 $1.384 (2)$ N5C4 $1.3226 (16)$ C10H10 0.9400 N5C3 $1.3524 (16)$ C11C12 $1.382 (2)$ N6C3 $1.3524 (16)$ C11C12 $1.382 (2)$ N6H6NA $0.89 (2)$ C12C13 $1.385 (2)$ N6H6NB $0.86 (2)$ C12H12 0.9400 N7C4 $1.3323 (16)$ C13H13 0.9400 N7C6 $1.4594 (17)$ $018H181$ $0.92 (2)$ C1C8 $1.4709 (18)$ C15H151 0.9700 C6H6A 0.9700 C18H183 0.9700 C6H6A 0.9700 C18H183 0.9700 C6H6A 0.9700 C18H183 0.9700 C4N3C2 $119.85 (11)$ $H7AC7H7R$ 109.5 C4N3-C2 $119.85 (11)$ $H7AC7H7C$ 109.5 C4N3-N2 $130.72 (10)$ $N7C7H7C$ 109.5 C4N3-N2 $113.98 (11)$ $H7AC7H7C$ 109.5 C4N3-C3 $118.92 (11)$ $C9C8-C13$ $119.13 (13)$ C3N6-H6NA $12.0 (13)$ $C9C8-C1$ $120.54 (12)$ C3N6-H6NB $120.1 (13)$ $C13C8-C1$ $120.33 (12)$
N2N3 $1.3846 (14)$ C8C9 $1.393 (2)$ N3C4 $1.3826 (16)$ C8C13 $1.3939 (19)$ N3C2 $1.3830 (15)$ C9C10 $1.381 (2)$ N4C2 $1.330 (16)$ C9H9 0.9400 N4C3 $1.3412 (18)$ C10C11 $1.384 (2)$ N5C4 $1.3226 (16)$ C10H10 0.9400 N5C3 $1.3524 (16)$ C11C12 $1.382 (2)$ N6C3 $1.3330 (17)$ C11H11 0.9400 N6H6NA $0.89 (2)$ C12C13 $1.385 (2)$ N6H6NB $0.86 (2)$ C12H12 0.9400 N7C4 $1.3323 (16)$ C13H13 0.9400 N7C6 $1.4594 (17)$ O1SC1S $1.386 (2)$ N7C7 $1.4617 (18)$ O1SH1S 0.9700 C6H6A 0.9700 C1SH1S1 0.9700 C6H6B 0.9700 C1SH1S3 0.9700 C6H6C 0.9700 C1SH1S3 0.9700 C2N1C1 $103.31 (10)$ N7C7H7B 109.5 C4N3C2 $119.85 (11)$ H7AC7H7B 109.5 C4N3-N2 $100.72 (10)$ N7C7H7C 109.5 C4N3-N2 $109.43 (10)$ H7AC7H7C 109.5 C3N4-C3 $118.92 (11)$ C9C8C13
N3-C41.3826 (16)C8-C131.3939 (19)N3-C21.3830 (15)C9-C101.381 (2)N4-C21.3330 (16)C9-H90.9400N4-C31.3412 (18)C10-C111.384 (2)N5-C41.3226 (16)C10-H100.9400N5-C31.3524 (16)C11-C121.382 (2)N6-C31.3330 (17)C11-H110.9400N6-H6NA0.89 (2)C12-C131.385 (2)N6-H6NB0.86 (2)C12-H120.9400N7-C41.3323 (16)C13-H130.9400N7-C51.4594 (17)O1S-C1S1.386 (2)N7-C71.4617 (18)O1S-H1S0.92 (2)C1-C81.4709 (18)C1S-H1S10.9700C6-H6A0.9700C1S-H1S30.9700C6-H6B0.9700C1S-H1S30.9700C6-H6B0.9700C1S-H1S30.9700C6-H6C0.9700C1S-H1S30.9700C6-H6A0.9700C1S-H1S30.9700C6-H6C0.9700C1S-H1S30.9700C2-N1-C1103.31 (10)N7-C7-H7A109.5C4-N3-N2130.72 (10)N7-C7-H7B109.5C4-N3-N2130.72 (10)N7-C7-H7C109.5C4-N3-N213.98 (11)H7A-C7-H7C109.5C4-N3-N213.98 (11)H7B-C7-H7C109.5C4-N3-N213.98 (11)H7B-C7-H7C109.5C4-N3-C3118.92 (11)C9-C8-C13119.13 (13)C3-N6-H6NA121.0 (13)C9-C8-C1120.54 (12)<
N3—C21.3830 (15)C9—C101.381 (2)N4—C21.3330 (16)C9—H90.9400N4—C31.3412 (18)C10—C111.384 (2)N5—C41.3226 (16)C10—H100.9400N5—C31.3524 (16)C11—C121.382 (2)N6—C31.3330 (17)C11—H110.9400N6—H6NA0.89 (2)C12—C131.385 (2)N6—H6NB0.86 (2)C12—H120.9400N7—C41.3323 (16)C13—H130.9400N7—C61.4594 (17)O1S—C1S1.386 (2)N7—C71.4617 (18)O1S—H1S0.92 (2)C1—C81.4709 (18)C1S—H1S10.9700C6—H6B0.9700C1S—H1S30.9700C6—H6B0.9700C1S—H1S30.9700C6—H6C0.9700C1S—H1S30.955C1—N2—N3101.79 (10)N7—C7—H7A109.5C4—N3—N2130.72 (10)N7—C7—H7C109.5C4—N3—N2130.72 (10)N7—C7—H7C109.5C4—N3—N2130.98 (11)H7A—C7—H7C109.5C4—N5—C3118.92 (11)C9—C8—C1120.54 (12)C3—N6—H6NA121.0 (13)C9—C8—C1120.54 (12)C3—N6—H6NB120.1 (13)C13—C8—C1120.33 (12)
N4—C21.3330 (16)C9—H90.9400N4—C31.3412 (18)C10—C111.384 (2)N5—C41.3226 (16)C10—H100.9400N5—C31.3524 (16)C11—C121.382 (2)N6—C31.3330 (17)C11—H110.9400N6—H6NA0.89 (2)C12—C131.385 (2)N6—H6NB0.86 (2)C12—H120.9400N7—C41.3323 (16)C13—H130.9400N7—C61.4594 (17)O1S—C1S1.386 (2)N7—C71.4617 (18)O1S—H1S0.92 (2)C1—C81.4709 (18)C1S—H1S10.9700C6—H6B0.9700C1S—H1S30.9700C6—H6C0.9700C1S—H1S30.9700C4—N3—C2119.85 (11)N7—C7—H7A109.5C4—N3—N2130.72 (10)N7—C7—H7B109.5C4—N3—N2109.43 (10)H7A—C7—H7C109.5C2—N4—C3113.98 (11)H7B—C7—H7C109.5C4—N5—C3118.92 (11)C9—C8—C13119.13 (13)C3—N6—H6NA121.0 (13)C9—C8—C1120.34 (12)
N4—C3 $1.3412 (18)$ $C10$ —C11 $1.384 (2)$ N5—C4 $1.3226 (16)$ $C10$ —H10 0.9400 N5—C3 $1.3524 (16)$ $C11$ —C12 $1.382 (2)$ N6—C3 $1.3330 (17)$ $C11$ —H11 0.9400 N6—H6NA $0.89 (2)$ $C12$ —C13 $1.385 (2)$ N6—H6NB $0.86 (2)$ $C12$ —H12 0.9400 N7—C4 $1.3323 (16)$ $C13$ —H13 0.9400 N7—C6 $1.4594 (17)$ 018 —C18 $1.386 (2)$ N7—C7 $1.4617 (18)$ 018 —H18 $0.92 (2)$ C1—C8 $1.4709 (18)$ $C18$ —H181 0.9700 C6—H6A 0.9700 $C18$ —H183 0.9700 C6—H6B 0.9700 $C18$ —H183 0.9700 C6—H6C 0.9700 $C18$ —H183 0.9700 C2—N1—C1 $103.31 (10)$ $N7$ —C7—H7A 109.5 C1—N2—N3 $101.79 (10)$ $N7$ —C7—H7B 109.5 C4—N3—C2 $119.85 (11)$ $H7A$ —C7—H7C 109.5 C2—N3—N2 $109.43 (10)$ $H7A$ —C7—H7C 109.5 C2—N4—C3 $113.98 (11)$ $H7B$ —C7—H7C 109.5 C4—N5—C3 $118.92 (11)$ $C9$ —C8—C13 $119.13 (13)$ C3—N6—H6NA $121.0 (13)$ $C9$ —C8—C1 $120.33 (12)$
N5—C41.3226 (16)C10—H100.9400N5—C31.3524 (16)C11—C121.382 (2)N6—C31.3330 (17)C11—H110.9400N6—H6NA0.89 (2)C12—C131.385 (2)N6—H6NB0.86 (2)C12—H120.9400N7—C41.3323 (16)C13—H130.9400N7—C61.4594 (17)O1S—C1S1.386 (2)N7—C71.4617 (18)O1S—H1S0.92 (2)C1—C81.4709 (18)C1S—H1S10.9700C6—H6A0.9700C1S—H1S20.9700C6—H6B0.9700C1S—H1S30.9700C6—H6C0.9700C1S—H1S30.9700C2—N1—C1103.31 (10)N7—C7—H7A109.5C1—N2—N3101.79 (10)N7—C7—H7B109.5C4—N3—N2130.72 (10)N7—C7—H7C109.5C4—N3—N2109.43 (10)H7A—C7—H7C109.5C2—N4—C3113.98 (11)H7B—C7—H7C109.5C4—N5—C3118.92 (11)C9—C8—C13119.13 (13)C3—N6—H6NA121.0 (13)C9—C8—C1120.54 (12)C3—N6—H6NB120.1 (13)C13—C8—C1120.33 (12)
N5—C3 $1.3524 (16)$ C11—C12 $1.382 (2)$ N6—C3 $1.3330 (17)$ C11—H11 0.9400 N6—H6NA $0.89 (2)$ C12—C13 $1.385 (2)$ N6—H6NB $0.86 (2)$ C12—H12 0.9400 N7—C4 $1.3323 (16)$ C13—H13 0.9400 N7—C6 $1.4594 (17)$ O1S—C1S $1.386 (2)$ N7—C7 $1.4617 (18)$ O1S—H1S $0.92 (2)$ C1—C8 $1.4709 (18)$ C1S—H1S1 0.9700 C6—H6A 0.9700 C1S—H1S2 0.9700 C6—H6B 0.9700 C1S—H1S3 0.9700 C6—H6C 0.9700 C1S—H1S3 0.9700 C2—N1—C1 $103.31 (10)$ N7—C7—H7A 109.5 C4—N3—C2 $119.85 (11)$ H7A—C7—H7B 109.5 C4—N3—N2 $130.72 (10)$ N7—C7—H7C 109.5 C4—N3—N2 $139.8 (11)$ H7A—C7—H7C 109.5 C2—N4—C3 $113.98 (11)$ H7B—C7—H7C 109.5 C4—N5—C3 $118.92 (11)$ C9—C8—C13 $119.13 (13)$ C3—N6—H6NA $121.0 (13)$ C13—C8—C1 $120.33 (12)$
N6—C3 1.3330 (17) C11—H11 0.9400 N6—H6NA 0.89 (2) C12—C13 1.385 (2) N6—H6NB 0.86 (2) C12—H12 0.9400 N7—C4 1.3323 (16) C13—H13 0.9400 N7—C6 1.4594 (17) O1S—C1S 1.386 (2) N7—C7 1.4617 (18) O1S—H1S 0.92 (2) C1—C8 1.4709 (18) C1S—H1S1 0.9700 C6—H6A 0.9700 C1S—H1S2 0.9700 C6—H6B 0.9700 C1S—H1S3 0.9700 C6—H6C 0.9700 C1S—H1S3 0.9700 C2—N1—C1 103.31 (10) N7—C7—H7A 109.5 C4—N3—C2 19.85 (11) H7A—C7—H7B 109.5 C4—N3—N2 130.72 (10) N7—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1
N6—H6NA 0.89 (2) C12—C13 1.385 (2) N6—H6NB 0.86 (2) C12—H12 0.9400 N7—C4 1.3323 (16) C13—H13 0.9400 N7—C6 1.4594 (17) O1S—C1S 1.386 (2) N7—C7 1.4617 (18) O1S—H1S 0.92 (2) C1—C8 1.4709 (18) C1S—H1S1 0.9700 C6—H6A 0.9700 C1S—H1S2 0.9700 C6—H6B 0.9700 C1S—H1S3 0.9700 C6—H6C 0.9700 C1S—H1S3 0.9700 C2—N1—C1 103.31 (10) N7—C7—H7A 109.5 C1—N2—N3 101.79 (10) N7—C7—H7B 109.5 C4—N3—C2 119.85 (11) H7A—C7—H7B 109.5 C2—N3—N2 130.72 (10) N7—C7—H7C 109.5 C2—N3—N2 109.43 (10) H7A—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1
N6—H6NB 0.86 (2) C12—H12 0.9400 N7—C4 1.3323 (16) C13—H13 0.9400 N7—C6 1.4594 (17) O1S—C1S 1.386 (2) N7—C7 1.4617 (18) O1S—H1S 0.92 (2) C1—C8 1.4709 (18) C1S—H1S1 0.9700 C6—H6A 0.9700 C1S—H1S2 0.9700 C6—H6B 0.9700 C1S—H1S3 0.9700 C6—H6C 0.9700 C1S—H1S3 0.9700 C2—N1—C1 103.31 (10) N7—C7—H7A 109.5 C1—N2—N3 101.79 (10) N7—C7—H7B 109.5 C4—N3—C2 119.85 (11) H7A—C7—H7B 109.5 C2—N3—N2 130.72 (10) N7—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7A—C7—H7C 109.5 C4—N5—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1 120.54 (12) C3—N6—H6NB 120.1 (13) C13—
N7—C41.3323 (16)C13—H130.9400N7—C61.4594 (17)O1S—C1S1.386 (2)N7—C71.4617 (18)O1S—H1S0.92 (2)C1—C81.4709 (18)C1S—H1S10.9700C6—H6A0.9700C1S—H1S20.9700C6—H6B0.9700C1S—H1S30.9700C6—H6C0.9700C1S—H1S30.9700C6—H6C0.9700C1S—H1S30.9700C6—H6C0.9700C1S—H1S30.9700C4—N3—C2119.85 (11)N7—C7—H7A109.5C4—N3—N2130.72 (10)N7—C7—H7B109.5C2—N4—C3113.98 (11)H7A—C7—H7C109.5C4—N5—C3118.92 (11)C9—C8—C13119.13 (13)C3—N6—H6NA121.0 (13)C9—C8—C1120.54 (12)C3—N6—H6NB120.1 (13)C13—C8—C1120.33 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C1—C81.4709 (18)C1S—H1S10.9700C6—H6A0.9700C1S—H1S20.9700C6—H6B0.9700C1S—H1S30.9700C6—H6C0.9700C1S—H1S30.9700C2—N1—C1103.31 (10)N7—C7—H7A109.5C1—N2—N3101.79 (10)N7—C7—H7B109.5C4—N3—C2119.85 (11)H7A—C7—H7B109.5C4—N3—N2130.72 (10)N7—C7—H7C109.5C2—N4—C3113.98 (11)H7B—C7—H7C109.5C4—N5—C3118.92 (11)C9—C8—C13119.13 (13)C3—N6—H6NA121.0 (13)C13—C8—C1120.33 (12)
C6—H6A0.9700C1S—H1S20.9700C6—H6B0.9700C1S—H1S30.9700C6—H6C0.9700C1S—H1S30.9700C2—N1—C1103.31 (10)N7—C7—H7A109.5C1—N2—N3101.79 (10)N7—C7—H7B109.5C4—N3—C2119.85 (11)H7A—C7—H7B109.5C4—N3—N2130.72 (10)N7—C7—H7C109.5C2—N4—C3113.98 (11)H7A—C7—H7C109.5C4—N5—C3118.92 (11)C9—C8—C13119.13 (13)C3—N6—H6NA121.0 (13)C9—C8—C1120.54 (12)C3—N6—H6NB120.1 (13)C13—C8—C1120.33 (12)
C6—H6B 0.9700 C1S—H1S3 0.9700 C6—H6C 0.9700 0
C6—H6C 0.9700 C2—N1—C1 103.31 (10) N7—C7—H7A 109.5 C1—N2—N3 101.79 (10) N7—C7—H7B 109.5 C4—N3—C2 119.85 (11) H7A—C7—H7B 109.5 C4—N3—N2 130.72 (10) N7—C7—H7C 109.5 C2—N3—N2 109.43 (10) H7A—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1 120.54 (12) C3—N6—H6NB 120.1 (13) C13—C8—C1 120.33 (12)
C2-N1-C1 103.31 (10) N7-C7-H7A 109.5 C1-N2-N3 101.79 (10) N7-C7-H7B 109.5 C4-N3-C2 119.85 (11) H7A-C7-H7B 109.5 C4-N3-N2 130.72 (10) N7-C7-H7C 109.5 C2-N3-N2 109.43 (10) H7A-C7-H7C 109.5 C2-N4-C3 113.98 (11) H7B-C7-H7C 109.5 C4-N5-C3 118.92 (11) C9-C8-C13 119.13 (13) C3-N6-H6NA 121.0 (13) C13-C8-C1 120.33 (12)
C1—N2—N3 101.79 (10) N7—C7—H7B 109.5 C4—N3—C2 119.85 (11) H7A—C7—H7B 109.5 C4—N3—N2 130.72 (10) N7—C7—H7C 109.5 C2—N3—N2 109.43 (10) H7A—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1 120.54 (12) C3—N6—H6NB 120.1 (13) C13—C8—C1 120.33 (12)
C4—N3—C2 119.85 (11) H7A—C7—H7B 109.5 C4—N3—N2 130.72 (10) N7—C7—H7C 109.5 C2—N3—N2 109.43 (10) H7A—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1 120.54 (12) C3—N6—H6NB 120.1 (13) C13—C8—C1 120.33 (12)
C4—N3—N2 130.72 (10) N7—C7—H7C 109.5 C2—N3—N2 109.43 (10) H7A—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1 120.54 (12) C3—N6—H6NB 120.1 (13) C13—C8—C1 120.33 (12)
C2—N3—N2 109.43 (10) H7A—C7—H7C 109.5 C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1 120.54 (12) C3—N6—H6NB 120.1 (13) C13—C8—C1 120.33 (12)
C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5 C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13) C3—N6—H6NA 121.0 (13) C9—C8—C1 120.54 (12) C3—N6—H6NB 120.1 (13) C13—C8—C1 120.33 (12)
C4—N5—C3118.92 (11)C9—C8—C13119.13 (13)C3—N6—H6NA121.0 (13)C9—C8—C1120.54 (12)C3—N6—H6NB120.1 (13)C13—C8—C1120.33 (12)
C3—N6—H6NA121.0 (13)C9—C8—C1120.54 (12)C3—N6—H6NB120.1 (13)C13—C8—C1120.33 (12)
C3—N6—H6NB 120.1 (13) C13—C8—C1 120.33 (12)
H6NA—N6—H6NB 118.3 (18) C10—C9—C8 120.14 (14)
С4—N7—С6 126.56 (12) С10—С9—Н9 119.9
C4—N7—C7 118.21 (11) C8—C9—H9 119.9
C6—N7—C7 115.01 (11) C9—C10—C11 120.31 (15)
N2—C1—N1 116.27 (11) C9—C10—H10 119.8
N2—C1—C8 121.01 (11) C11—C10—H10 119.8
N1—C1—C8 122.72 (12) C12—C11—C10 120.14 (14)
N1—C2—N4 128.12 (11) C12—C11—H11 119.9
N1—C2—N3 109.21 (11) C10—C11—H11 119.9
N4—C2—N3 122.66 (12) C11—C12—C13 119.79 (14)
N6-C3-N4 117.28 (12) C11-C12-H12 120.1
N6-C3-N5 116.20 (13) C13-C12-H12 120.1
N4—C3—N5 126.52 (12) C12—C13—C8 120.48 (13)
N5-C4-N7 119.54 (12) C12-C13-H13 119.8
N5-C4-N3 117.96 (11) C8-C13-H13 119.8
N7—C4—N3 122.50 (12) C1S—O1S—H1S 107.0 (13)
N7—C6—H6A 109.5 O1S—C1S—H1S1 109.5

supplementary materials

N7—C6—H6B	109.5	O1S-C1S-H1S2	109.5
H6A—C6—H6B	109.5	H1S1—C1S—H1S2	109.5
N7—C6—H6C	109.5	O1S-C1S-H1S3	109.5
Н6А—С6—Н6С	109.5	H1S1—C1S—H1S3	109.5
H6B—C6—H6C	109.5	H1S2—C1S—H1S3	109.5
C1—N2—N3—C4	178.41 (12)	C6—N7—C4—N5	173.18 (12)
C1—N2—N3—C2	-0.83 (12)	C7—N7—C4—N5	-1.02 (18)
N3—N2—C1—N1	0.51 (14)	C6—N7—C4—N3	-7.5 (2)
N3—N2—C1—C8	179.98 (10)	C7—N7—C4—N3	178.25 (11)
C2—N1—C1—N2	0.03 (14)	C2—N3—C4—N5	-1.60 (17)
C2—N1—C1—C8	-179.44 (11)	N2—N3—C4—N5	179.22 (11)
C1—N1—C2—N4	178.09 (12)	C2—N3—C4—N7	179.11 (11)
C1—N1—C2—N3	-0.57 (13)	N2—N3—C4—N7	-0.1 (2)
C3—N4—C2—N1	-179.24 (12)	N2-C1-C8-C9	159.09 (13)
C3—N4—C2—N3	-0.74 (18)	N1-C1-C8-C9	-21.47 (19)
C4—N3—C2—N1	-178.42 (10)	N2-C1-C8-C13	-21.37 (18)
N2—N3—C2—N1	0.92 (13)	N1—C1—C8—C13	158.07 (12)
C4—N3—C2—N4	2.83 (18)	C13—C8—C9—C10	1.2 (2)
N2—N3—C2—N4	-177.83 (11)	C1—C8—C9—C10	-179.30 (14)
C2—N4—C3—N6	177.38 (11)	C8—C9—C10—C11	-0.5 (3)
C2—N4—C3—N5	-2.68 (19)	C9-C10-C11-C12	-0.6 (3)
C4—N5—C3—N6	-176.15 (11)	C10-C11-C12-C13	0.9 (3)
C4—N5—C3—N4	3.9 (2)	C11—C12—C13—C8	-0.2 (2)
C3—N5—C4—N7	177.83 (11)	C9—C8—C13—C12	-0.8 (2)
C3—N5—C4—N3	-1.48 (17)	C1—C8—C13—C12	179.66 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1S—H1S…N1	0.92 (2)	1.97 (2)	2.8861 (16)	172.8 (18)
N6—H6NB…N4 ⁱ	0.86 (2)	2.11 (2)	2.9679 (17)	178.8 (18)
N6—H6NA…O1S ⁱ	0.89 (2)	2.398 (19)	3.0280 (18)	128.3 (16)
C6—H6C…N2	0.97	2.08	2.8753 (18)	138
C6—H6C…N3	0.97	2.54	2.9484 (17)	105
C7—H7A···N5	0.97	2.22	2.6788 (18)	108
C7—H7C···O1S ⁱⁱ	0.97	2.48	3.4438 (19)	176

Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1.

Fig. 1

